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Abstract

This is an attempt to model individual behavior through specification of
inverse problems with a tool originally devised to endow resource-constrained
machines with some ability to make autonomous decisions based on infer-
ence. Utility herein is measured by the likelihood that the individual puts
the decision into action. Univariate utility functions are specified by num-
ber tables rather than as mathematical functions. The number tables are
interpolated into continuous functions not in the domain of utilities but in
the domain of standardization functions. Having obtained a multiplicatively
separable loss function from the univariate utility functions, the method fol-
lows the lines taken in maximum likelihood inference. A new performance
index is introduced which is a continuous strictly monotone function of stan-
dardized variable preserving the information that loss and utility functions
embody.

MSC code: 93E24 Least squares and related methods
JEL code: C3 Multiple or Simultaneous Equation Models; Multiple Vari-
ables
A preliminary version of this paper was presented at EURO 2019, Dublin.
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1 Introduction

A minimal problem example

Here is a minimal example of the kind of problems this paper proposes to
solve.

A secretary is going to work on a flexible time basis. Her problem is how
long to work and to sleep. Ideally she wishes to work 4 [h], sleep 9 [h], and
have 8 [h] free time, where [h] is for hours. The overhead such as dressing
and commuting takes 2 [h]. The wage is 1/8 [cu/h] plus 30% extra per hour
if over 8 [h] where [cu] is for currency unit; she wishes to earn 2 [cu] per
workday.

Causality equations for the minimal example

This is a system of equations describing the problem:

Y x ≈ y̌
Ywork
Ysleep
Yfree
Yincome

[ xworkxsleep

]
≈


y̌work
y̌sleep
y̌free
y̌income




xwork
xsleep

24− (2 + xwork + xsleep){
(1/8)xwork xwork ≤ 8

1 + (1.3/8)(xwork − 8) 8 ≤ xwork

 ≈


4
9

8
2




[h]
[h]

[h]
[cu]

 (1)

where ‘[h]’ is for hours and ‘[cu]’ is for currency units. The dashed lines
separate the outcome into cause and effect parts.

Note that the causality assumed here is deterministic rather than prob-
abilistic. Approximately equal ‘≈’ is used here instead of equality ‘=’ not
because the result of an action involves uncertainty but because the system
of equations is inconsistent having no solution: for instance, working 4 [h]
which is ideal gets only 1/2 [cu] income, way less than the ideal 2 [cu].

In most real-world problems there are many more variables and equa-
tions.

Utility tables for the minimal example

Suppose the secretary’s value system is as in Table 1. The table indicates,
for instance, that the likelihood normalized to (0, 1] that she accepts to work
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Table 1: Utility specification

outcome
cause effect

work sleep free income

k y [h] u y [h] u y [h] u y [cu] u
1 3 .5 6 .5 3 .5 0.9 .5
2 4 1 9 1 8 1 1.2 .9
3 8 .95 10 .5 10 .5 2 1
4 9 .9 3 .5
5 10 .5

3 [h] is 1/2, under the condition that she can sleep 9 [h], have 8 [h] free time,
and a 2 [cu] income. Ideally she works 4 [h] as has been stated, but not so
much against working longer up to about 9 [h]. Likewise with the other
items. In most real-world problems there are more of larger tables.

Results for the minimal example

With the above input items the method to be proposed yields a recom-
mendation as in Table 2, with itemwise frustration as shown in Figure 1 in

Table 2: Solution

work sleep free income

Ideal 4 9 8 2
Optimal 8.9 8.0 5.1 1.2
Unit [h] [h] [h] [cu]

which a bar to the left of zero indicates frustration caused by shortage of the
item whereas a bar to the right indicates excess. All items fall short except
work which is too long. Besides the recommendation and its drawbacks, the
method is capable of making predictions such as:

• The probability the secretary works between 8 and 9 hours is 23%.
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Figure 1: Rejectability chart

Prior research

There is a plethora of literature from all behavior sciences including psy-
chology, economics, decision theory, control theory and so forth, with recent
additions such as machine learning, many among which adopting the view
that decision making is an inverse problem. This paper takes the classic po-
sition that statistical inference is decision making, drawing on the matching
law (Herrnstein, et al., 1997) and microeconomic models such as (Wichers,
1996).

Outline

The rest of this paper is organized as follows. The formulation is described in
Section 2. The standard itemwise loss function and its equivalent standard
itemwise utility function are defined in Section 3. Section 5 uses piecewise
linear standardization functions to convert item quantities with measure-
ment units into unit-free values enabling their mutual comparisons. Section
4 introduces a possibly new performance index to be called rejectability
which is a continuous strictly monotone increasing function of the standard-
ized variable and hence has all information carried by the standard itemwise
utility function or the standard loss function. With these tools prepared,
the solution of the minimal example is obtained in 6. Comparison of the
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proposed method against other approaches is made in Section 7.

2 Formulation

Given a decision vector x, a causality function Y := Y x : x 7→ y and a target
vector y̌, consider attempting to solve Y x := Y (x) = y̌ with respect to x .
The decision x constitutes the first part of the outcomes y := [y1 · · · yn] ,

x = [x1 · · · xm] = [y1 · · · ym] m ≤ n ,

so that in Y =
[
· · · Yi · · ·

]
for i ≤ m, Yi : x 7→ yi gives Yi x = xi = yi .

Here Yi is assumed continuous and monotone. For the general case m < n
the system of equations has no solution, so a system of relaxed equations
Y x ≈ y̌ has to be solved instead, which is called the inverse problem.

Approximate solutions are possible if ‘≈’ reflects the decision maker’s
value system. A typical case is statistical parameter estimation in which x
is for unknown parameters, Yi : x 7→ yi predictors, and y̌ observation data.

The notation for functions of the form x 7→ y is Y x in this paper, Y being
the upper case of the target variable y . This shorthand notation is hoped
to reduce confusion caused by the large number of variables and functions
involved. Other conventions are summarized in Appendix together with a
list of symbols.

Assuming that the discrepancy `i between the goal y̌i and prediction yi
for item i can be assessed independently of the other items j 6= i , it is
customary to take the total amount of adjustments

Ly
• : y 7→ `• :=

∑
`i

as a measure of adequacy of the predicted result y = Y x, which is in turn
the adequacy of x . Thus a solution of an inverse problem is usually defined
as the minimizer of

Lx
• : x 7→ `• :=

∑
`i =

∑
(Ly

i ◦ Yi)x

where ‘◦’ is for right-to-left function composition:

x̂ := arg min
x
Lx
• x . (2)

In statistical estimation Lx
• is often a negative log-likelihood function.

It is convenient to split Ly
i into an itemwise standardization function

Zi : yi 7→ zi and a standard loss function Lz : zi 7→ `i independent of item
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i , as in the lower triangle of the diagram

x yi measured

`i zi unit-free.

Lx
i

Yi

Zi

Ly
i

Lz

(3)

The standardization function performs nondimensionalization; x and y may
come with measurement units while z and ` are unit-free. A standardization
function Zi is strictly monotone increasing and Zi(y̌i) = 0 .

Since inverse problems arise in many applications, it is important that
Lx
• be specified easily by those who are familiar with the problem but not

necessarily versed in mathematics and programming, in such a way that the
resulting inverse problems may be solved by resource-constrained devices.

This paper proposes a practical method to specify Lx
• , which results

in a specification of the standard loss function Lz and the standardization
functions Z =

[
· · · Zi · · ·

]
. The function Ly

i is specified via a utility table
which is more intuitive than specifying the function directly in the form of
a mathematical expression. Utility tables are preferred over the equivalent
loss tables because intuitive meaning can be assigned to utility values while
it seems difficult to do the same with loss values. The outline of the proce-
dure for each item i is as follows:

Itemwise loss function specification

1. Let utility Uy
i : yi 7→ ui be the normalized likelihood that the deci-

sion maker accepts the outcome yi given that all other items are fully
satisfied.

2. Specify a table of outcomes {yik}k=1 ···K of yi against their utility val-
ues {uik}k=1 ···K .

3. Transform this [yik, uik]-table to a table of yik against zik so that the
utility of zik equals uik , Uy

i (zik) = uik.
4. Interpolate and extrapolate the resulting [yik, zik]-table to produce a

continuous standardization function Zi .
5. Map Lz to Lx

i by (3).

3 Standard loss and utility functions

A typical case of inverse problem formulation is the weighted least squares
in which

Zi : yi 7→ zi := (yi − µi)/σi 0 < σi linear standardization (4)
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with

Lz : zi 7→ `i := z2
i square loss (5)

where µi and 0 < σi are given constants. Another popular loss function is

Lz : zi 7→ `i := |zi| absolute value loss (6)

the optimization of which reduces to linear programming if the causality
function Y is linear. The loss function used in this paper is

Lz : zi 7→ `i :=

{
z2
i |zi| ≤ θ
| 2θ zi | − θ2 θ ≤ | zi |

(7)

illustrated in Figure 2 which is the square loss near the origin but linear
beyond ±θ in the same way as the Huber loss function in robust parameter
estimation. In addition, (7) has the benefit of requiring a relatively narrow

0.0

0.5

1.0

1.5

2.0

−2 −1 0 1 2
zi

l i

Figure 2: Standard loss function Lz

Dashed line: z2
i , θ = log 2 = 0.693

dynamic range for evaluation. The overall standard loss Lz
• :=

∑
Lz(zi)

looks as in Figures 3 and 4 if z is bidimensional.
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Figure 4: Bivariate standard loss function contours

Let

U z : zi 7→ ui := e−`i standard utility function

independently of item i, such that ui fits within 0 and 1, and `i = 0 cor-
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responds to ui = 1 as in Figure 5. This is the upside down loss function

0.0

0.5

1.0

−2 −1 0 1 2
zi

u i

Figure 5: Standard utility function U z

θ = log 2 = 0.693

compressed to [0, 1] with higher compression rate towards the bottom. With

Ux
• : x 7→ u• :=

∏
ui

minimization of the sum of loss is equivalent to maximization of the product
of utility:

x̂ = arg min
x
Lx
• x = arg max

x
Ux
• x . (8)

In statistical parameter estimation Ux is proportional to the the likeli-
hood function and the right end of (8) is the maximum likelihood estimation.
In the context of inverse problem it would be more appropriate to call Ux

the standard acceptability function. For the sake of familiarity Ux is called
the standard utility function in the remainder of this paper.

4 Rejectability

To formulate an inverse problem it remains to devise a method to define
the standardization functions Z =

[
· · · Zi · · ·

]
in (3), which is to be more

flexible than the linear standardization in (4). The first requirement for Zi

is that the corresponding values produce the same loss value: Z : yi 7→ zi ⇒
Ly(yi) = Lz(zi) . Since `i 7→ ui has an inverse, this is equivalent to requiring
that Uy(yi) = U z(zi) . This condition presents two candidates ±zi except
when ui = 1 , which can be resolved by assuming the utility function to be
unimodal.

A way to easily choose one from the two candidates is to define a new
performance index which is bijective to zi while carrying the utility infor-
mation. Demanding the performance function to be continuous results in a
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candidate

Rz : zi 7→ ri := sign(zi) {1− U z(zi)} standard rejectability function (9)

sign zi :=


−1 zi < 0

0 0 = zi

+1 0 < zi

illustrated in Figure 6. The function is symmetric with respect to the origin;

−1.0

−0.5

0.0

0.5

1.0

−2 −1 0 1 2
zi

r i

Figure 6: Standard rejectability function Rz

θ = log 2 = 0.693

the left half is the utility function shifted downwards by one, and the right
half is the utility function upside down. Another interpretation is that the
rejectability ri is the standard variable zi compressed to [−1, 1] in a similar
way as the utility ui is the loss `i negated and compressed to [0, 1] .

The rejectability indicates how off-target the i-th item is in a scale of
[−1, 1] , with ri = 0 meaning on-target; negative and positive numbers
meaning off to the left and to the right, respectively. An interpretation of
rejectability is the normalized likelihood of rejecting the value yi signed to
indicate if the rejection is based on too little of yi or on too much of yi .
An important difference between Rz and U z is that while the former has a
continuous inverse, the latter does not. Thus, given a monotone increasing
rejectability function Ry, the standardization function Zi can be determined
uniquely.

With

V z : zi 7→ vi := sign zi · Lz(zi) signed loss function

an explicit representation of the inverse of Rz is

(Rz)−1 : zi vi ri
(V z

i )−1 (Rv
i )−1
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(Rv)−1 : ri 7→ vi =

{
sign ri · {− log(1 + ri)} ri ≤ 0

sign ri · {− log(1− ri)} 0 ≤ ri

(V z)−1 : vi 7→ zi =

{
sign vi · | vi |

1
2 −1

2 ≤ vi ≤
1
2

{(log 2)2 sign vi + vi}/(2 log 2) otherwise.

All functions F z
i : zi 7→ fi can be mapped to functions F y

i : yi 7→ fi

by prepending the standardization function Zi as in F y
i : yi

Zi7→ zi
F z
i7→ fi .

Similarly, all functions of Gy
i : yi 7→ gi can be mapped to functions of vector

x by prepending the causality function Yi as in Gx
i : x

Yi7→ yi
Gy

i7→ gi .

5 Standardization function specification

The role of itemwise standardization function Z is to convert yi to zi. This is
needed because the loss function Ly

• has been split into the standardization
function Z and the standard loss function Lz

•. Similarly, the destandardiza-
tion function Z−1 is needed to convert zi to yi because the causality function
Y is given in terms of y rather than in z . A solution method for loss func-
tion typically involves iterations. Since conversions Z and Z−1 are invoked
for every iteration, it is necessary that they be simple, stable, and fast.

The standardization function Z is equivalent to rejectability Rz
i , but not

U z
i or Lz

i . However, since rejectability is an unfamiliar concept to potential
users, Z will be specified from utility data points. Conversion from utility
to rejectability can be made unique by providing sign zi as

sign zi =


−1 yi is on the left of the peak of Uy

i

0 yi is at the peak of Uy
i

+1 yi is on the right of the peak of Uy
i

(10)

This enables determination of Zi given (yi, ui).
To define a standardization functions Zi , assume that data points

{[yik, uik]}k=1 ···K are given with: 3 ≤ K ; yik are strictly increasing yik <
yi k+1 ; utilities are positive 0 < uik ≤ 1 ; the table is unimodal; the peak is
at ǩi ; 2 ≤ ǩi ≤ K − 1 ; and uiǩi = 1 .

The [yik, uik]-table can be converted to [yik, rik]-table: rik is negative if
k < ǩ, nonnegative otherwise. Converting rik into zik by ri 7→ zi produces
[yik, zik]-table.

Interpolating and extrapolating the [yik, zik]-table linearly results in a
piecewise linear standardization function. See Figure 7 for an example.
Since Z is piecewise linear and not differentiable, so is Ly

•, meaning that the
optimization has to be carried out derivative-free.
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A utility value uik is assigned as normalized likelihood that the decision
maker accepts the corresponding outcome yik under the condition that all
other outcomes are ideal: ujk = 1 for all j 6= i .

6 Solution

Itemwise loss functions

This is the core part of the method which converts the utility specification
Table 1 into itemwise loss functions Ly

i following the procedure outlined in
Section 2.

The parameter in (7) is set to θ = 1/2 since yi values for normalized
acceptance likelihood ui < 1/2 seem to be of insignificant importance.

Interpolating and extrapolating the work columns as described in Sec-
tion 5 results in a piecewise linear standardization function Zwork illustrated
in Figure 7. The corresponding rejectability function Ry

work is Zwork com-
pressed vertically as illustrated in Figure 8. The utility function Uy

work is
Ry
work twisted as in Figure 9. Finally, the loss function Ly

work is obtained by
flipping Uy

work upside down and elongating vertically as in Figure 10. Similar
functions for the other items are available in the same way.

With the causality the functions Y and the itemwise loss functions LY
i

at hand, the inverse problem (1) can be solved by (2). The optimization
result is summarized in Table 3. Its rejectability chart has been illustrated

Table 3: Solution

i zi yi unit ri
work 0.319 8.946 [h] 0.097
sleep -0.295 7.956 [h] -0.083
free -0.491 5.098 [h] -0.214
income -0.405 1.154 [cu] -0.151

in Figure 1.
Utility as a function of work and sleep looks as in Figure 11, its contours

or indifference curves are in Figure 12.
Since utility Ux

• is proportional to the likelihood of the position of x ,
normalizing Figure 12 by

N :=

∫ ∞
−∞

∫ ∞
−∞

Ux
•(x) dxwork dxsleep
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yields the probability density of x , enabling probabilistic behavior predic-
tion of the decision to be taken. For instance, the probability that the
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secretary will be working between 8 and 9 [h] is

1

N

∫ ∞
−∞

∫ 9

8
Ux
•(x) dxwork dxsleep = 0.23

7 Discussion

The way to fill the utility table as described in Section 5 is the crucial part
of the present approach. The utility Uy

i of yi is optimistically assumed to be
measured in terms of acceptability independent of other items. Empirical
studies would be awaited to find a better way. Since the overall utility Uy

•
is multiplicative, all items i have to be essential, without luxury items.

The method to define a standardization function Z is an application
of (Yoneda, Moretti and Poker, 2016). It is possible to adopt sophisticated
interpolation methods such as monotone increasing splines enabling opti-
mization methods based on differentiability for fast computation. However,
that implies slower destandardization Z−1, lower computational stability,
and more complex code.

The major advantage of the present method over the usual least squares
is that the piecewise linear standardization functions such as in Figure 7 is
more expressive than the linear standardization (4).

While (5) needs a wide dynamic range to store its values since z2 tends
to be a large number, (7) requires a narrower dynamic range, of the same
order as (6) so that in principle fixed point numbers rather than floating
point numbers should suffice. This is relevant since the goal is to bring
inverse problem formulation to resource-constrained devices. Also, the linear
interpolation enables fast conversion between y and z . Additional research
in this direction is available in (Yoneda, 2018).

A feature of the present formulation as compared to mathematical pro-
gramming is in the absence of hard constraints, guaranteeing that a solu-
tion always exists. The rejectability function Ry plays a role similar to the
Lagrangian multiplier or shadow price in constrained programming. The
accompanying rejectabiliy chart as in Figure 8 has been found useful in
debugging causality equations.

Since all items stand on an equal footing the formulation seeks a balance
among them rather than favor an item in detriment of the others. Con-
sider for instance the usual constrained optimization formulation of the diet
problem which aims to minimize the cost while minimally satisfying the nu-
tritional requirements. Aiming to hit a balance in various criteria such as
nutrition, cost, taste, and other aspects seems at least more humane.

As has been pointed out in Section 5, the optimization (2) should be
carried out derivative-free.
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Appendix: Notation

A unified notation is set to avoid confusion. The notation for a function of
the form Y : x 7→ y is Y x, with Y the upper case y for the function value
and the superscript x for the argument, which may be omitted when clear
from the context. When subscripted Y x

i , it is a component of a vector of
functions Y x =

[
· · · Y x

i · · ·
]

, meaning that Y x
i is short for (Yi)

xi : xi 7→ yi
rather than (Yi)

x : x =
[
· · · xi · · ·

]
7→ yi . The suffix i is omitted to Y x

when the function xi 7→ yi is independent of i . A vector-to-scalar function
is written as Y x

• : x =
[
· · · xi · · ·

]
7→ y• .

Generic
Y x Function x =

[
· · · xj · · ·

]
7→ y =

[
· · · yi · · ·

]
or function xi 7→ yi

when the function is independent of i .
Y x
i Function (Yi)

xi : xi 7→ yi .
Y x
• Function x =

[
· · · xi · · ·

]
7→ y• ∈ R .

Some specific variables and functions are listed below.

Variables
i Outcome items, such as work, sleep, free, and income.
j Decision items, such as work and sleep.
k Utility specification table row entry number.

ǩi The entry number k such that uik = 1 .
x Vector of decision variables, =

[
· · · xj · · ·

]
.

x̂ Solution of the inverse problem, = arg minx L
x
• x .

y Vector of outcomes, =
[
· · · yi · · ·

]
=
[
· · · xj · · · yi · · ·

]
, the first part

of which is identical with x .
y̌ Vector of target outcomes, =

[
· · · y̌i · · ·

]
.

z Vector of standardized variables, =
[
· · · zi · · ·

]
.

` Loss vector, =
[
· · · `i · · ·

]
, 0 ≤ `i .

`• Loss, =
∑
`i , 0 ≤ `• .

r Rejectability vector, =
[
· · · ri · · ·

]
, −1 ≤ ri ≤ 1 .

u Utility vector, =
[
· · · ui · · ·

]
, 0 ≤ ui ≤ 1 .
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Functions
Yi Causality functions Yi : x 7→ yi , assumed monotone with respect to

each variable xj .
Ly
i Itemwise loss functions yi 7→ `i .

Ly
• Loss function y 7→ `• .

Lx
i Itemwise Loss functions xi 7→ `i .

Lx
• Loss function x 7→ `• .

Lz Standard loss function zi 7→ `i , independent of i.
Rz Itemwise standard rejectability function zi 7→ ri , independent of i .
Uy
i Itemwise utility function yi 7→ zi .

U z Itemwise standard utility function zi 7→ ui , independent of i .
Zi Standardization function yi 7→ zi .
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